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ABSTRACT: Pd-catalyzed direct carboxylation of alkenyl
C−H bonds with carbon dioxide was realized for the first
time. Treatment of 2-hydroxystyrenes and a catalytic
amount of Pd(OAc)2 with Cs2CO3 under atmospheric
pressure of CO2 afforded corresponding coumarins in
good yield. Furthermore, isolation of the key alkenylpalla-
dium intermediate via C−H bond cleavage was achieved.
The reaction was proposed to undergo reversible
nucleophilic addition of the alkenylpalladium intermediate
to CO2.

The catalytic, direct carboxylation of C−H bonds under
atmospheric pressure of carbon dioxide is highly attractive

as a straightforward method for the synthesis of carboxylic acid
derivatives.1 Recently, several groups including ours reported
transition metal catalyzed direct carboxylation of sp2 C−H
bonds of aromatic molecules; however, catalytic carboxylation
of alkenyl sp2 C−H bonds has not yet been realized.2,3

Moreover, efficient direct carboxylation of unactivated C−H
bonds required pyrophoric reducing reagent such as
AlMe2(OMe) in order to generate the highly nucleophilic
species.2d,4 We focused on Pd(II) catalysts, as the nucleophilic
carboxylation reaction of organopalladium(II) species has
several precedents,5 and Pd(II) could undergo alkenyl C−H
bond cleavage without changing the valency of palladium.6 We
therefore expected that, by utilizing these characteristics, the
catalytic direct carboxylation of alkenyl C−H bonds could be
achieved without using reducing reagents. We have chosen 2-
hydroxystyrenes as substrate with the expectation that the
hydroxy group would behave as a directing group for C−H
activation.7−9

We first examined the reaction employing α-phenyl-2-
hydroxystyrene 1a with 5 mol % of Pd(OAc)2 in diglyme at
100 °C under CO2 atmosphere in a closed system in the
presence of various bases. We found that, by using KOt-Bu as
base, the desired carboxylated product, 4-phenylcoumarin 2a,
was obtained in 16% yield (Table 1, entry 3). The efficiency of
the reaction was improved dramatically by using Cs2CO3 as
base to give 2a in high yield (entry 6), but other bases were not
effective for this reaction. Examination of solvents revealed that
various kinds of solvents could be employed for this reaction.
Whereas polar solvents such as DMF and DMSO gave the
desired product in slightly lower yield, diglyme gave the best
result for this reaction (entries 6−9). The reaction without
Pd(OAc)2 was carried out only to recover the starting material
quantitatively.10

This reaction was applied to various functionalized 2-
hydroxystyrenes. A wide range of substrates bearing an
electron-donating or an electron-withdrawing group on the
phenyl ring at α-position of 2-hydroxystyrene gave the
corresponding coumarins in good yield (Table 2, entries 2−
5). Furthermore, the substrates bearing a functional group such
as 4-cyanophenyl, 3,4-methylenedioxyphenyl, pyrrole, and
thiophene group also provided the desired carboxylation
products without affecting these groups (entries 6−9). It
should be noted that bromophenyl moiety was not affected
under the reaction conditions, implying no formation of Pd(0)
species (entry 10). α-Methyl and nonsubstituted 2-hydrox-
ystyrenes also gave the corresponding coumarins (entries 11
and 12). Substitution of methyl or methoxy group on the
phenol ring caused no problem with increased catalyst loadings,
and 3-hydroxypyridine derivative 1p afforded corresponding
carboxylation product 2p in moderate yield (entries 13−16).
Unfortunately, β-substituted 2-hydroxystyrenes did not give the
desired products.
To obtain information on the reaction mechanism,

observation of the reaction intermediates was examined under
stoichiometric conditions (Scheme 1). Treatment of α-phenyl-
2-hydroxystyrene 1a with Pd(OAc)2 (1 equiv) in DMSO-d6 at
room temperature smoothly afforded the cyclometalated
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Table 1. Screening of Reaction Conditions

entry solvent base 2a (%)a 1a (%)a

1 diglyme none 0 quant.
2 diglyme LiOt-Bu 2 96
3 diglyme KOt-Bu 16 75
4 diglyme K2CO3 0 quant.
5 diglyme CsOH·H2O 0 98
6 diglyme Cs2CO3 86b 8
7 cyclooctane Cs2CO3 80 14
8 1,4-dioxane Cs2CO3 72 24
9 DMF Cs2CO3 73 16
10 DMSO Cs2CO3 69 25

aBased on 1H NMR. bIsolated yield.
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complex 3a(DMSO)2, which was generated via alkenyl C−H
bond cleavage.11,12 In contrast, the mixture of 1a and 0.5 equiv
of Pd(OAc)2 with Cs2CO3 was found to give an alkenyl
palladium intermediate 4a, which was coordinated by a cesium

salt of 1a. Complex 4a was also observed under the catalytic
reaction conditions using DMSO-d6 as a solvent and the
structure was confirmed by X-ray analysis of a single crystal.13

Quite interestingly, the carboxylation reactions of the
complexes 3a and 4a themselves with CO2 did not proceed
at all;13 however, they showed a similar catalytic activity just
like Pd(OAc)2 when they were employed as a catalyst under
the conditions shown in Table 2.
As these intriguing results concerning stoichiometry were

thought to be due to the reversible nucleophilic addition of the
alkenylpalladium intermediate to CO2 and its unfavorable
equilibrium for carboxylation product, the following experiment
was carried out to confirm this point. In situ formation of
cesium carboxylate 2a-Cs by treatment of CsOH·H2O and
coumarin 2a, followed by addition of Pd(OAc)2 (1 equiv) was
monitored by 1H NMR in DMSO-d6 (Scheme 2). As a result,

the complex 3a′ similar to 3a(DMSO)2 was generated by rapid
decarboxylation at room temperature.14 This result confirmed
the reversibility of the carboxylation reaction with CO2 with the
equilibrium in favor of the decarboxylation side.15 Under the
catalytic conditions, the equilibrium would become in favor of
the carboxylation side due to the participation of the third
molecule of substrate to regenerate complex 4a.16

Although further studies are required to clarify the precise
mechanism of the reaction, our proposed mechanism is shown
in Scheme 3. First the six-membered alkenyl palladium

intermediate 4 is produced by chelation-assisted alkenyl C−H
bond cleavage of 2-hydroxystyrene with Pd(OAc)2 along with
coordination of the second molecule of 2-hydroxystyrene 1 as
its cesium salt. Subsequently, alkenyl palladium(II) 4 undergoes
reversible nucleophilic carboxylation to afford palladium
carboxylate intermediate A, which reacts with another molecule
of 2-hydroxystyrene 1 and base to give coumarin with
regeneration of the cyclometalated intermediate 4.17 The shift
of the carboxylation−decarboxylation equilibrium to the

Table 2. Generality

aCyclooctane was used as solvent. b7.5 mol % of Pd(OAc)2 was
employed. c10 mol % of Pd(OAc)2 was employed.

Scheme 1. Formation of Alkenylpalladium Complexes

aORTEP diagram of alkenylpalladium complex 4a·diglyme at the 50%
probability level (H atoms have been omitted for clarity). The diagram
shows half of a dimerized symmetric structure.

Scheme 2. Decarboxylation of Palladium Carboxylate
Complexes

Scheme 3. Proposed Mechanism
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carboxylation side could be attributed to the lactonization
process.18

In conclusion, we have developed a catalytic direct
carboxylation of unactivated alkenyl C−H bond of 2-
hydroxystyrenes. This is the first example of Pd(II)-catalyzed
alkenyl C−H bond functionalization with nucleophilic
carboxylation. Furthermore, isolation of the alkenyl palladium
intermediate suggested the importance of the regeneration step
of intermediate 4 in this reaction. Further studies to reveal the
detailed mechanism are in progress.
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